Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vertebrate-specific glutaredoxin is essential for brain development.

Identifieur interne : 000898 ( Main/Exploration ); précédent : 000897; suivant : 000899

Vertebrate-specific glutaredoxin is essential for brain development.

Auteurs : Lars Br Utigam [Suède] ; Lena Dorothee Schütte ; José Rodrigo Godoy ; Timour Prozorovski ; Manuela Gellert ; Giselbert Hauptmann ; Arne Holmgren ; Christopher Horst Lillig ; Carsten Berndt

Source :

RBID : pubmed:22139372

Descripteurs français

English descriptors

Abstract

Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.

DOI: 10.1073/pnas.1110085108
PubMed: 22139372
PubMed Central: PMC3251147


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vertebrate-specific glutaredoxin is essential for brain development.</title>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177 Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schutte, Lena Dorothee" sort="Schutte, Lena Dorothee" uniqKey="Schutte L" first="Lena Dorothee" last="Schütte">Lena Dorothee Schütte</name>
</author>
<author>
<name sortKey="Godoy, Jose Rodrigo" sort="Godoy, Jose Rodrigo" uniqKey="Godoy J" first="José Rodrigo" last="Godoy">José Rodrigo Godoy</name>
</author>
<author>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
</author>
<author>
<name sortKey="Gellert, Manuela" sort="Gellert, Manuela" uniqKey="Gellert M" first="Manuela" last="Gellert">Manuela Gellert</name>
</author>
<author>
<name sortKey="Hauptmann, Giselbert" sort="Hauptmann, Giselbert" uniqKey="Hauptmann G" first="Giselbert" last="Hauptmann">Giselbert Hauptmann</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22139372</idno>
<idno type="pmid">22139372</idno>
<idno type="doi">10.1073/pnas.1110085108</idno>
<idno type="pmc">PMC3251147</idno>
<idno type="wicri:Area/Main/Corpus">000880</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000880</idno>
<idno type="wicri:Area/Main/Curation">000880</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000880</idno>
<idno type="wicri:Area/Main/Exploration">000880</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vertebrate-specific glutaredoxin is essential for brain development.</title>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177 Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schutte, Lena Dorothee" sort="Schutte, Lena Dorothee" uniqKey="Schutte L" first="Lena Dorothee" last="Schütte">Lena Dorothee Schütte</name>
</author>
<author>
<name sortKey="Godoy, Jose Rodrigo" sort="Godoy, Jose Rodrigo" uniqKey="Godoy J" first="José Rodrigo" last="Godoy">José Rodrigo Godoy</name>
</author>
<author>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
</author>
<author>
<name sortKey="Gellert, Manuela" sort="Gellert, Manuela" uniqKey="Gellert M" first="Manuela" last="Gellert">Manuela Gellert</name>
</author>
<author>
<name sortKey="Hauptmann, Giselbert" sort="Hauptmann, Giselbert" uniqKey="Hauptmann G" first="Giselbert" last="Hauptmann">Giselbert Hauptmann</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (MeSH)</term>
<term>Axons (physiology)</term>
<term>Brain (embryology)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Developmental Biology (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Humans (MeSH)</term>
<term>Neurites (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Signal Transduction (MeSH)</term>
<term>Vertebrates (MeSH)</term>
<term>Zebrafish (embryology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Apoptose (MeSH)</term>
<term>Axones (physiologie)</term>
<term>Biologie du développement (MeSH)</term>
<term>Danio zébré (embryologie)</term>
<term>Encéphale (embryologie)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Neurites (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Vertébrés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Danio zébré</term>
<term>Encéphale</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Brain</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neurites</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Neurites</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Axones</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Axons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Cell Line, Tumor</term>
<term>Developmental Biology</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Signal Transduction</term>
<term>Vertebrates</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose</term>
<term>Biologie du développement</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Transduction du signal</term>
<term>Vertébrés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22139372</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>51</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Vertebrate-specific glutaredoxin is essential for brain development.</ArticleTitle>
<Pagination>
<MedlinePgn>20532-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1110085108</ELocationID>
<Abstract>
<AbstractText>Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bräutigam</LastName>
<ForeName>Lars</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schütte</LastName>
<ForeName>Lena Dorothee</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Godoy</LastName>
<ForeName>José Rodrigo</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prozorovski</LastName>
<ForeName>Timour</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gellert</LastName>
<ForeName>Manuela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hauptmann</LastName>
<ForeName>Giselbert</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lillig</LastName>
<ForeName>Christopher Horst</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516008">GLRX2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001369" MajorTopicYN="N">Axons</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015509" MajorTopicYN="N">Developmental Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="Y">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016501" MajorTopicYN="N">Neurites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014714" MajorTopicYN="N">Vertebrates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22139372</ArticleId>
<ArticleId IdType="pii">1110085108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1110085108</ArticleId>
<ArticleId IdType="pmc">PMC3251147</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jun 28;109(7):887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2003 May 1;8:s484-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12700098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Sep;5(9):819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12942088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2003 Aug;28(1):51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14514985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 14;278(46):45546-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 6;314(2):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr Patterns. 2005 Aug;5(6):809-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Jan;96(2):585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16336628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr Patterns. 2006 Jan;6(2):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Dev Biol. 2006;6:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2006 Nov;27(11):1564-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1865-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2007;600:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17607942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2007 Dec 14;1185:8-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 1;283(5):2814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Apr;10(4):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 10;255(21):10261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7000775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Jun 25;257(12):6686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7045093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):239-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Aug 10;376(6540):509-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7637782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 1995 Jul;203(3):253-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1999 Sep;73(3):961-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 1999 Nov;59(4):397-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10501635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Apr;33(4):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2008 Aug 1;320(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Nov 19;28(47):12427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Neurother. 2009 Jan;9(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19102666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1793(10):1588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 24;461(7263):537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Sep;11(9):2083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19290777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a001859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Oct 15;49(7):1147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20656021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1810(1):93-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1810(1):2-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011;4(170):ra26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21521879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2011 Jun;43(3):180-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21271304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jul;278(14):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2001 Aug;4(8):781-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<name sortKey="Gellert, Manuela" sort="Gellert, Manuela" uniqKey="Gellert M" first="Manuela" last="Gellert">Manuela Gellert</name>
<name sortKey="Godoy, Jose Rodrigo" sort="Godoy, Jose Rodrigo" uniqKey="Godoy J" first="José Rodrigo" last="Godoy">José Rodrigo Godoy</name>
<name sortKey="Hauptmann, Giselbert" sort="Hauptmann, Giselbert" uniqKey="Hauptmann G" first="Giselbert" last="Hauptmann">Giselbert Hauptmann</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
<name sortKey="Schutte, Lena Dorothee" sort="Schutte, Lena Dorothee" uniqKey="Schutte L" first="Lena Dorothee" last="Schütte">Lena Dorothee Schütte</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000898 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000898 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22139372
   |texte=   Vertebrate-specific glutaredoxin is essential for brain development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22139372" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020